62 research outputs found

    Mapping of ESE-1 subdomains required to initiate mammary epithelial cell transformation via a cytoplasmic mechanism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ETS family transcription factor ESE-1 is often overexpressed in human breast cancer. ESE-1 initiates transformation of MCF-12A cells via a non-transcriptional, cytoplasmic process that is mediated by a unique 40-amino acid serine and aspartic acid rich (SAR) subdomain, whereas, ESE-1's nuclear transcriptional property is required to maintain the transformed phenotype of MCF7, ZR-75-1 and T47D breast cancer cells.</p> <p>Results</p> <p>To map the minimal functional nuclear localization (NLS) and nuclear export (NES) signals, we fused in-frame putative NLS and NES motifs between GFP and the SAR domain. Using these GFP constructs as reporters of subcellular localization, we mapped a single NLS to six basic amino acids (<sup>242</sup>HGKRRR<sup>247</sup>) in the AT-hook and two CRM1-dependent NES motifs, one to the pointed domain (NES1: <sup>102</sup>LCNCALEELRL<sup>112</sup>) and another to the DNA binding domain (DBD), (NES2: <sup>275</sup>LWEFIRDILI<sup>284</sup>). Moreover, analysis of a putative NLS located in the DBD (<sup>316</sup>GQKKKNSN<sup>323</sup>) by a similar GFP-SAR reporter or by internal deletion of the DBD, revealed this sequence to lack NLS activity. To assess the role of NES2 in regulating ESE-1 subcellular localization and subsequent transformation potency, we site-specifically mutagenized NES2, within full-length GFP-ESE-1 and GFP-NES2-SAR reporter constructs. These studies show that site-specific mutation of NES2 completely abrogates ESE-1 transforming activity. Furthermore, we show that exclusive cytoplasmic targeting of the SAR domain is sufficient to initiate transformation, and we report that an intact SAR domain is required, since block mutagenesis reveals that an intact SAR domain is necessary to maintain its full transforming potency. Finally, using a monoclonal antibody targeting the SAR domain, we demonstrate that the SAR domain contains a region accessible for protein - protein interactions.</p> <p>Conclusions</p> <p>These data highlight that ESE-1 contains NLS and NES signals that play a critical role in regulating its subcellular localization and function, and that an intact SAR domain mediates MEC transformation exclusively in the cytoplasm, via a novel nontranscriptional mechanism, whereby the SAR motif is accessible for ligand and/or protein interactions. These findings are significant, since they provide novel molecular insights into the functions of ETS transcription factors in mammary cell transformation.</p

    Benign mammary epithelial cells enhance the transformed phenotype of human breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent research has yielded a wealth of data underscoring the key role of the cancer microenvironment, especially immune and stromal cells, in the progression of cancer and the development of metastases. However, the role of adjacent benign epithelial cells, which provide initial cell-cell contacts with cancer cells, in tumor progression has not been thoroughly examined. In this report we addressed the question whether benign MECs alter the transformed phenotype of human breast cancer cells.</p> <p>Methods</p> <p>We used both <it>in vitro </it>and <it>in vivo </it>co-cultivation approaches, whereby we mixed GFP-tagged MCF-10A cells (G2B-10A), as a model of benign mammary epithelial cells (MECs), and RFP-tagged MDA-MB-231-TIAS cells (R2-T1AS), as a model of breast cancer cells.</p> <p>Results</p> <p>The <it>in vitro </it>studies showed that G2B-10A cells increase the colony formation of R2-T1AS cells in both soft agar and clonogenicity assays. Conditioned media derived from G2B-10A cells enhanced colony formation of R2-T1AS cells, whereas prior paraformaldehyde (PFA) fixation of G2B-10A cells abrogated this enhancement effect. Moreover, two other models of benign MECs, MCF-12A and HuMECs, also enhanced R2-T1AS colony growth in soft agar and clonogenicity assays. These data reveal that factors secreted by benign MECs are responsible for the observed enhancement of the R2-T1AS transformed phenotype. To determine whether G2B-10A cells enhance the tumorigenic growth of co-injected R2-T1AS cells <it>in vivo</it>, we used the nude mouse xenograft assay. Co-injecting R2-T1AS cells with G2B-10A cells ± PFA-fixation, revealed that G2B-10A cells promoted a ~3-fold increase in tumor growth, irrespective of PFA pre-treatment. These results indicate that soluble factors secreted by G2B-10A cells play a less important role in promoting R2-T1AS tumorigenesis <it>in vivo</it>, and that additional components are operative in the nude mouse xenograft assay. Finally, using array analysis, we found that both live and PFA-fixed G2B-10A cells induced R2-T1AS cells to secrete specific cytokines (IL-6 and GM-CSF), suggesting that cell-cell contact activates R2-T1AS cells.</p> <p>Conclusions</p> <p>Taken together, these data shift our understanding of adjacent benign epithelial cells in the cancer process, from passive, noncontributory cells to an active and tumor-promoting vicinal cell population that may have significant effects early, when benign cells outnumber malignant cells.</p

    Spontaneous development of Epstein-Barr Virus associated human lymphomas in a prostate cancer xenograft program

    Get PDF
    Prostate cancer research is hampered by the lack of in vivo preclinical models that accurately reflect patient tumour biology and the clinical heterogeneity of human prostate cancer. To overcome these limitations we propagated and characterised a new collection of patient-derived prostate cancer xenografts. Tumour fragments from 147 unsupervised, surgical prostate samples were implanted subcutaneously into immunodeficient Rag2-/-γC-/- mice within 24 hours of surgery. Histologic and molecular characterisation of xenografts was compared with patient characteristics, including androgen-deprivation therapy, and exome sequencing. Xenografts were established from 47 of 147 (32%) implanted primary prostate cancers. Only 14% passaged successfully resulting in 20 stable lines; derived from 20 independent patient samples. Surprisingly, only three of the 20 lines (15%) were confirmed as prostate cancer; one line comprised of mouse stroma, and 16 were verified as human donor-derived lymphoid neoplasms. PCR for Epstein-Barr Virus (EBV) nuclear antigen, together with exome sequencing revealed that the lymphomas were exclusively EBV-associated. Genomic analysis determined that 14 of the 16 EBV+ lines had unique monoclonal or oligoclonal immunoglobulin heavy chain gene rearrangements, confirming their B-cell origin. We conclude that the generation of xenografts from tumour fragments can commonly result in B-cell lymphoma from patients carrying latent EBV. We recommend routine screening, of primary outgrowths, for latent EBV to avoid this phenomenon

    MERTK receptor tyrosine kinase is a therapeutic target in melanoma

    Get PDF
    Metastatic melanoma is one of the most aggressive forms of cutaneous cancers. Although recent therapeutic advances have prolonged patient survival, the prognosis remains dismal. C-MER proto-oncogene tyrosine kinase (MERTK) is a receptor tyrosine kinase with oncogenic properties that is often overexpressed or activated in various malignancies. Using both protein immunohistochemistry and microarray analyses, we demonstrate that MERTK expression correlates with disease progression. MERTK expression was highest in metastatic melanomas, followed by primary melanomas, while the lowest expression was observed in nevi. Additionally, over half of melanoma cell lines overexpressed MERTK compared with normal human melanocytes; however, overexpression did not correlate with mutations in BRAF or RAS. Stimulation of melanoma cells with the MERTK ligand GAS6 resulted in the activation of several downstream signaling pathways including MAPK/ERK, PI3K/AKT, and JAK/STAT. MERTK inhibition via shRNA reduced MERTK-mediated downstream signaling, reduced colony formation by up to 59%, and diminished tumor volume by 60% in a human melanoma murine xenograft model. Treatment of melanoma cells with UNC1062, a novel MERTK-selective small-molecule tyrosine kinase inhibitor, reduced activation of MERTK-mediated downstream signaling, induced apoptosis in culture, reduced colony formation in soft agar, and inhibited invasion of melanoma cells. This work establishes MERTK as a therapeutic target in melanoma and provides a rationale for the continued development of MERTK-targeted therapies

    Triple-negative breast cancer: bridging the gap from cancer genomics to predictive biomarkers

    No full text
    Triple-negative breast cancer (TNBC) represents a challenge clinically due to a lack of response to hormonal and HER2-targeted agents coupled with an aggressive disease course. As the biology of this breast cancer subtype is better understood, it is clear that TNBC is a heterogeneous disease and one targeted therapy is unlikely to be active in all patients. Biomarkers predictive of response to treatment are thus of great importance in TNBC. This review outlines studies evaluating biomarkers predictive of response to neoadjuvant chemotherapy and to targeted therapies in the advanced setting. The development of validated biomarkers in conjunction with novel targeted therapies represents an opportunity to improve patient outcomes in TNBC

    “Omics” data integration and functional analyses link Enoyl-CoA hydratase, short chain 1 to drug refractory dilated cardiomyopathy

    No full text
    Abstract Background Large-scale “omics” datasets have not been leveraged and integrated with functional analyses to discover potential drivers of cardiomyopathy. This study addresses the knowledge gap. Methods We coupled RNA sequence (RNA-Seq) variant detection and transcriptome profiling with pathway analysis to model drug refractory dilated cardiomyopathy (drDCM) using the BaseSpace sequencing hub and Ingenuity Pathway Analysis. We used RNA-Seq case-control datasets (n = 6 cases, n = 4 controls), exome sequence familial DCM datasets (n = 3 Italians, n = 5 Italians, n = 5 Chinese), and controls from the HapMap project (n = 5 Caucasians, and n = 5 Asians) for disease modeling and putative mutation discovery. Variant replication datasets: n = 128 cases and n = 15 controls. Source of datasets: NCBI Sequence Read Archive. Statistics: Pairwise differential expression analyses to determine differentially expressed genes and t-tests to calculate p-values. We adjusted for false discovery rates and reported q-values. We used chi-square tests to assess independence among variables, the Fisher’s Exact Tests and overlap p-values for the pathways and p-scores to rank network. Results Data revealed that ECHS1(enoyl-CoA hydratase, short chain 1(log2(foldchange) = 1.63329) hosts a mirtron, MIR3944 expressed in drDCM (FPKM = 5.2857) and not in controls (FPKM = 0). Has-miR3944-3p is a putative target of BAG1 (BCL2 associated athanogene 1(log2(foldchange) = 1.31978) and has-miR3944-5p of ITGAV (integrin subunit alpha V(log2(foldchange) = 1.46107) and RHOD (ras homolog family member D(log2(foldchange) = 1.28851). There is an association between ECHS1:11 V/A(rs10466126) and drDCM (p = 0.02496). The interaction (p = 2.82E-07) between ECHS1:75 T/I(rs1049951) and ECHS1:rs10466126 is associated with drDCM (p < 2.2e-16). ECHS1:rs10466126 and ECHS1:rs1049951 are in linkage disequilibrium (D’ = 1). The interaction (p = 7.84E-08) between ECHS1:rs1049951 and the novel ECHS1:c.41insT variant is associated with drDCM (p < 2.2e-16). The interaction (p = 0.001096) between DBT (Dihydrolipoamide branched chain transacylase E2):384G/S(rs12021720) and ECHS1:rs10466126 is associated with drDCM (p < 2.2e-16). At the mRNA level, there is an association between ECHS1 (log2(foldchange) = 1.63329; q = 0.013927) and DBT (log2(foldchange) = 0.955072; q = 0.0368792) with drDCM. ECHS1 is involved in valine (−log (p = 3.39E00)), isoleucine degradation (p = 0.00457), fatty acid β-oxidation (−log(p) = 2.83E00), and drug metabolism:cytochrome P450 (z-score = 2.07985196) pathways. The mitochondria (−log(p) = 8.73E00), oxidative phosphorylation (−log(p) = 5.35E00) and TCA-cycle II (−log(p) = 2.70E00) are dysfunctional. Conclusions We introduce an integrative data strategy that considers the interplay between the DNA, mRNA, and associated pathways, which represents a possible diagnostic, prognostic, biomarker, and personalized treatment discovery approach in genomically heterogeneous diseases
    corecore